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Abstract - Machine Learning Operations (MLOps) help integrate machine learning model development with production 

deployment using best practices from software engineering. The machine learning life cycle brings unique problems, and this 

paper outlines possible approaches to address and fix them. Key MLOps practices are reviewed, focusing on Continuous 

Integration and Continuous Deployment (CI/CD), automated testing, and adaptive scaling strategies. Techniques for deploying 

models based on latency and traffic demands are explored, including traffic routing and shadow deployments. Advanced 

strategies such as canary releases, A/B testing, automated monitoring and retraining are also discussed. The goal is for 

organizations to increase reliability, reduce downtime, create scalable, robust ML pipelines, and accelerate innovation by 

incorporating engineering best practices. 
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1. Introduction 
Machine learning is rapidly transforming and enabling 

industries to make meaningful predictions and gain data-

driven insights for personalized recommendations, real-time 

fraud prevention, predictive maintenance, autonomous 

driving, and more. Training and deploying machine learning 

models at scale can come with unique problems, and MLOps 

is a tailored version of DevOps (Developer Operations) meant 

to tackle them. Continuous updates, quality control, and 

scaling are vital for real-world applications, and MLOps 

emphasizes automation and monitoring to achieve that.  

Deploying ML models into production is a complex 

process beyond model development. Unlike traditional 

applications, ML models have a critical dependency on data, 

and a drift in data can cause unintended effects, making 

monitoring and updating crucial. Models need to be 

periodically retrained to maintain quality, adding complexity 

to the deployment pipeline.  

Resource constraints can make it challenging for some 

types of models that require a lot of computing resources or 

applications that need real-time results for high traffic. The 

scope and objective of this article are to provide best practices 

for setting up scalable MLOps pipelines, focusing on 

incorporating engineering practices into model development, 

automated deployment, monitoring, and scaling. 

2. Foundations of the MLOps Pipeline 
2.1. Key Stages of MLOps 

2.1.1. Data Management  

Machine learning model performance relies on data, and 

data freshness is critical for model training and retraining. 

Data versioning helps keep track of various versions of data 

on which the model is trained. Consider tools such as DVC to 

maintain consistency. It is recommended to maintain robust 

preprocessing pipelines that can preprocess data into a format 

that the model needs, ensuring that the input data is clean, 

consistent, and free of anomalies. Look for features that 

improve model performance and explainability. Features that 

can lead to overfitting or data leakage should be avoided.  

2.1.2. Model Training and Validation 

Orchestrated training pipelines minimize manual work 

and allow rapid iteration. Consider tools such as MLFlow or 

SageMaker pipelines to automate end-to-end training 

workflows. Implement distributed training frameworks for 

large datasets and complex models to leverage multiple GPUs 

or TPUs. Validate models across a range of metrics, including 

accuracy, precision, recall, and latency, and run periodic 

stress/load tests to ensure the system behaves as expected at 

scale.  

2.1.3. Deployment Automation 

Automating deployments helps save engineers time and 
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avoid mistakes in the process. There can be challenges when 

models are expected to run in different environments, such as 

Windows, Linux, etc.  Docker and Kubernetes are good 

solutions for deploying models consistently across different 

platforms. CI/CD pipelines help take all the heavy lifting 

between development and deployment from engineers. It 

helps manage different code versions, run automated 

integration and load tests, and deploy in different pre-

production environments to analyze model performance and 

develop various deployment strategies. CI/CD pipeline tools 

like Jenkins or GitLab CI help streamline the model 

development life cycle.  

2.1.4. Monitoring and Continuous Feedback  

Once deployed in production, monitoring provides 

visibility into how a model performs in production. 

Monitoring for input data drift and ML output results is crucial 

to ensure models stay performant and fresh.  Various 

performance metrics, such as latency, throughput, accuracy, 

drift, and infrastructure metrics, such as CPU/memory, need 

to be monitored. Alerts should be configured to change trends 

in any of these metrics. Also, consider adding custom metrics 

and developing real-time dashboards that help engineers gain 

insights into model performance. Continuous feedback from 

real-world performances of these models helps detect issues 

early, enhance user satisfaction, and improve model 

performance.  

 
Fig. 1 Different stages of MLOps lifecycle 

3. CI/CD Pipelines for Machine Learning 
3.1. Continuous Integration for ML Models 

3.1.1. Data Validation 

Model training data needs to be consistent and clean. 

Hence, data validation checks and schema validation checks 

are quite important. Appropriate alarms should be raised if 

necessary checks were to fail.  

3.1.2. Version Control and Dependency Management 

Reproducibility and rollback capabilities are crucial for 

any software, and they become more important for critical 

services that handle high traffic with little to no room for 

failures. Tools such as Git help add version control to various 

changes made to the model over time. Solutions such as DVC 

(Data Version Control) help keep track of different versions 

of data to help with rollback and investigation. 

3.1.3. Automated Testing 

Like any good software, testing is paramount for ML 

models as well. It is good to incorporate various testing 

strategies for software development into model development 

and add tests specific to the model. Unit tests, especially for 

data transformation functions, help discover errors during 

development and ensure regression is not introduced for new 

changes. Integration tests for the end-to-end pipeline make 

sure individual components are working fine. Load tests help 

stress test the model and the deployment infrastructure to 

confirm that it is resilient during traffic surges. Model 

validation tests using thresholds for performance metrics help 

detect issues in newer model versions.  

3.2. Continuous Deployment (CD) 

3.2.1. Blue Green Deployment 

Blue Green Deployment maintains two identical 

environments, one running the current production version of 

the model and the other running the new version that’s about 

to be rolled out. Traffic is switched all at once from blue to 

green once the new model is performing as expected. This 

helps reduce downtime and enable quick rollbacks. This is a 

good choice for straightforward, low-risk updates and 

enabling quick rollbacks. It is also a good choice for 

straightforward, low-risk updates.  

3.2.2. Canary Release 

Canary deployment, like Blue-Green deployment, will 

have 2 identical environments running different versions of 

the model, but the newer model is only initially exposed to a 

small set of users. Depending on how that goes, traffic is 

slowly dialed up all the way to 100% for the new model. This 

helps limit the blast radius to a smaller subset of users, and 

rolling back to older models can also be done quickly.  

3.2.3. Shadow Deployment 

Shadow deployment is a process where a new potential 

model gets a copy of the same production traffic to process 

messages, and results are analyzed and compared against the 

production model.  

3.2.4. A/B Testing and Traffic Dial-Up Control  

A/B testing is a method to compare 2 different models by 

splitting traffic between both models and comparing their 

performances in live environments. There are various 

strategies for choosing the percentage of traffic to send to the 

new model version. One popular option in Meta is to roll out 
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new features to internal users first, then to a small group of 

external users, and then eventually to all users. This keeps risk 

to a minimum and allows for quick mitigation of issues. New 

features can also be rolled out to certain geographic locations 

before being made available nationwide or worldwide.  

3.3. Automated Retraining 

Automated retraining of ML models is often overlooked 

but important for real-world systems. When set up correctly, 

it can dramatically reduce the scope for manual interventions 

and help keep the model fresh and reliable despite drifts in 

data. Pipelines need to be set up, such as a significant drop in 

performance of the existing model or a data distribution shift 

that automatically triggers retraining of the existing model. 

Automated training pipelines can manage model revision, data 

revision, testing, and deployment, allowing continuous 

updates. 

4. Types of Models Based on Invocation Patterns 
4.1. Batch Processing Models 

Batch models are suitable when model outputs are 

expected periodically rather than in real-time. They will be set 

to run at different intervals, like twice a day, daily, weekly, 

etc., and usually, a process will be responsible for 

accumulating requests during that window and invoking the 

model. Suppose an online retailer wants to make weekly 

recommendations on products to buy for their customers; 

batch processing would be an ideal approach. Predictive 

maintenance processes run daily to predict machines likely to 

fail, which is another good example.  

4.2. Synchronous Models 

Synchronous, real-time models are suited for processes 

with minimal response latency. This also means that the caller 

usually waits for a response from the model before proceeding 

with the rest of their processes. Failure handling is important 

in such scenarios since failing fast is more desirable than 

taking more time than expected and succeeding. Fraud 

prevention for financial transactions is an example of 

synchronous processing where responses are expected in real-

time, within a few seconds. Voice assistants are another great 

example of models that need to be synchronous since users 

would expect immediate feedback.  

4.3. Asynchronous Models 

Asynchronous models are ideal for situations where 

immediate response is not required and in cases where clients 

want a non-blocking mechanism. The process usually invokes 

the model with the given output and lets the model notify the 

invoker once the results are available. Requests are usually 

queued, and the model processes them in FIFO order.  

Since they do not need to meet low latency requirements, 

they can run at lower priority, optimizing resources and costs. 

Content moderation on platforms like Facebook and TikTok 

usually uses async models to analyze images, videos, and text 

for potentially harmful content. E-commerce and financial 

institutions use async models to generate insights on customer 

behavior for targeted marketing campaigns.  

5. Scaling and Load Management in Model 

Serving 
5.1. Auto Scaling Strategies 

5.1.1. Horizontal Scaling 

Horizontal scaling is an approach in which instances are 

added to the production environment based on traffic 

demands, and users pay only for what they use.  

5.1.2. Vertical Scaling 

Vertical scaling is a strategy where more memory and/or 

processing power is added to individual instances to handle 

high-load requests.  

5.1.3. Dynamic Scaling Policies 

An auto-scaling policy to scale based on various metrics 

such as memory, CPU, and number of requests is 

recommended. This optimizes resource usage since it scales 

up and down as demand fluctuates, and most cloud providers 

charge only when a particular resource is being used.  

5.2. Optimizing for Low Latency 

5.2.1. Edge Computing 

Edge computing is a mechanism where ML models are 

run on devices close to end users, like IoT devices, 

smartphones, or edge servers. This helps in reducing latency, 

data privacy, and cost efficiency since data does not have to 

be sent to a centralized cloud infrastructure. Edge computing 

is a popular option for autonomous vehicles that need to 

process enormous amounts of data quickly to make instant 

decisions.  

5.2.2. Caching and Pre-Computation 

Caching is another good strategy to store frequently used 

results without having to make redundant operations and 

improve response times. Various caching strategies dictate 

when to store and delete data from the cache. Batch processing 

is an example where model results are generated in batches 

and stored in a caching layer that is available to be consumed 

by clients. Frequently used features are cached in some cases 

instead of having to recalculate features for every input.  

5.3. Concurrency Management and Load Balancing 

5.3.1. Concurrency limits 

Consider limiting the number of concurrent requests 

handled by individual instances so throttling can be avoided, 

and that performance does not degrade over time.  

5.3.2. Load Balancing 

Load balancing is critical for environments where ML 

models are used in high-traffic environments. This ensures 

efficient distribution of requests across multiple instances, 

thereby minimizing latency, improving performance, and 
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reducing single points of failure. There are various load 

balancing strategies, such as round-robin load balancing, 

where requests are distributed sequentially in a circular order 

among instances with similar processing power. Serverless 

load balancing is a popular option for highly fluctuating 

lightweight workloads. AWS Lambda and Google Cloud 

Functions are some services that offer serverless 

infrastructure. 

6. Monitoring, Logging, and Alerting in 

Production 
6.1. Model Performance and Monitoring 

6.1.1. Data and Prediction Drift Detection 

Detecting drift in input data and model predictions is 

important to maintain long-term model performance. 

Statistical methods such as the Population Stability Index 

(PSI) can be used to identify changes in distribution. 

Additionally, automated monitoring tools can be configured 

to trigger alerts when alarming deviations are detected, 

ensuring timely intervention and model retraining.  

6.1.2. Real-Time Metrics Collection 

Exposing and tracking real-time metrics such as latency, 

accuracy, and error rates is important to maintain a model in 

production. Tools such as AWS CloudWatch and Prometheus 

can be used for metric visualization and analysis. 

Incorporating metrics such as throughput, resource utilization, 

and response times can help proactively identify bottlenecks 

and performance degradation.  

6.2. Operational Metrics and Alarms 

Infrastructure metrics such as CPU/Memory and GPU 

consumption should be tracked to understand usage patterns, 

optimize model deployments, and be cost-efficient. It is highly 

recommended that alert or alarm systems be set up to track 

important metrics and ensure they are within an expected 

range. This should also be integrated with an incident 

management system for manual intervention and quicker issue 

resolution.  

7. Case Study: Synchronous Model Handling 

with Production and Shadow Deployments 
7.1. Example Setup 

Let us consider an e-commerce platform that relies on 

online models to recommend products, personalize search 

results, and block fraudulent transactions in real-time. Given 

the high traffic and low latency demands, the company uses 

synchronous models for recommendation and fraud detection 

while using asynchronous models to personalize website 

content based on user behavior.  

To continuously improve model performance, they would 

need an automated mechanism to validate and deploy new 

models without affecting existing customers. A shadow 

deployment strategy sounds like a fitting approach for this use 

case.  

7.2. Requirements and Challenges 

7.2.1. Low Latency Requirements 

The fraud detection models needed to respond within 50 

milliseconds so that user experience is not affected and to keep 

bad actors from doing fraudulent things. Longer delays can 

affect checkout, possibly forcing customers to abandon their 

carts.  

7.2.2. Frequent Model updates 

Fraudulent activities are evolving as fraudsters find new 

opportunities to exploit. Fraud detection strategies must 

constantly adapt to changing patterns and require consistent 

model updates. 

7.2.3. Model Validation in Real-Time 

Since it is hard for them to reproduce production traffic in 

other environments, they need a safe way to validate new 

models at 100% production traffic without affecting user 

experience. Analysis should be performed on the predictions 

from the model under validation and compared with the 

existing production model.  

7.2.4. Scalability Under High Traffic 

Transactions can exceed 10,000 requests per second, 

especially during peak shopping seasons. Both the production 

and shadow models need to be supported by an infrastructure 

that can handle traffic surges. 

7.2.5. Cost Constraints for the Infrastructure 

The company would always need to maintain 2 different 

models at production traffic to keep up with changing patterns 

constantly. That would mean twice the storage and 

infrastructure cost. Deployment strategies and resource usage 

should be optimized for cost to meet cost targets. Resources 

should be scaled down during non-peak hours, and their 

infrastructure should not be overallocated with resources that 

are not being used.  

7.3. Solution: Shadow Deployment and Real-Time 

Monitoring 

7.3.1. Primary Production Model 

This is the stable version of the model that has been 

serving production requests and has proved to respond with 

low latency under high traffic. This is being constantly 

monitored for performance drifts as well as errors.  

7.3.2. Shadow Model 

A newer version of the model that’s deployed in a shadow 

environment receives 100% of production traffic. Results 

from this model will not be hooked to the production flow and 

will not affect end customers in any way. Engineers and 

scientists will monitor performance closely, evaluating it 

under real-world conditions.  

7.3.3. Traffic Routing and Duplication 

The load balancer that helps divert traffic to appropriate 
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instances hosting the production model is configured to 

duplicate all traffic and send it to the shadow environment.  

7.3.4. Automated Metric Collection 

Key metrics such as accuracy, latency, error rates, and 

resource usage metrics are all emitted and tracked across both 

models. Engineers can directly compare the performance of 

new vs. old models to make an informed decision on 

promoting newer versions of the model.  

7.3.5. Real-Time Monitoring and Alerts 

Dashboards are configured to monitor critical metrics for 

both models. Alarms are configured, looking at various 

metrics and notifying operations anytime there is an anomaly 

or a spike in error rates. Confidence thresholds are set on 

performance expectations for the new model, such as 

matching production latency with a 10% tolerance and 

maintaining similar accuracy.  

7.3.6. Gradual Dial-up 

Once shadow model results are validated and it looks 

good to be promoted as the production model, the company 

decided to dial up the traffic sent to the newer model 

gradually. They start with 10% of live production traffic sent 

to the shadow model, while the remaining 90% goes to the 

existing production model. Eventually, the shadow model gets 

all 100% of production traffic, and the production model is 

kept in reserve only for cases where a rollback is needed.  

7.4. Results 

7.4.1. Improved Model Validation and Real-Time Testing 

Shadow deployments helped the company validate new 

models on live production traffic without risking customer 

experience. Engineers and scientists were able to validate and 

gain insights into the new model’s performance in production 

conditions and look for issues such as drift, decay, or 

engineering bugs before a full launch. 

7.4.2. Reduction in Rollback Incidents 

Rollback incidents would have reduced considerably 

since there are much fewer surprises during a production 

deployment. Changes go through rigorous testing in lower 

environments and shadow testing with production traffic. The 

new shadow model is constantly monitored for output, trends, 

and metrics such as latency to ensure they are within the 

expected range.  

7.4.3. Data-Driven Decision Making 

Based on results from shadow deployments, engineers 

can make informed decisions about the type of instances to 

use, scaling needs, meeting requirements, etc., while science 

can gain insights on model performance, feature selection for 

newer models, hyperparameters, etc. Because of the gradual 

dial-up, stakeholders can identify and compare the affected 

population to the existing population to generate meaningful 

insights. Dial-up also helps us take a conservative step towards 

large rollouts, and the company can quickly dial down if they 

see unintended results.  

7.5. Key Takeaways 

7.5.1. Continuous Model Improvement 

The company notices that developing and deploying 

features takes much less time. New fraud detection strategies 

or recommendation models are safely tested without risking 

customer experience. This helps them quickly leverage more 

performant models to keep up with the competition.  

 
Fig. 2  Architectural overview from the case study 
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7.5.2. Operational Efficiency and Scalability 

Thanks to effective load-balancing strategies to distribute 

traffic, infrastructure usage is optimized for peak times. Most 

cloud providers, like AWS, Azure, etc., provide options to pay 

only for what you use, so the company benefits from using 

resources appropriately based on varying traffic conditions.  

7.6. Lessons Learned 

7.6.1. Establish Clear Success Metrics 

It is important to identify specific thresholds for metrics 

such as latency, accuracy, and resource usage to track the 

existing production model’s performance and to decide when 

a shadow model is ready for production.  

7.6.2. Use Automated Monitoring and Alerts 

Real-time dashboards are crucial for operations and 

engineers to monitor performance and detect performance 

issues early. It is important to configure automated alerts so 

teams are notified immediately of issues. 

7.6.3. Gradual Deployment 

Shadow results showed that the new model’s 

performance was as expected. The company has gradually 

deployed the new model into different geographic locations to 

help mitigate risk. This also helped them gain insights into 

model performance differences between customers using the 

new and existing models. These effective deployment and 

validation strategies allowed the company to achieve low 

latency and high reliability in fraud detection and 

recommendation services. They maintain an agile 

development model, constantly improving their results 

without sacrificing customer experience.  

8. Conclusion 
8.1. Summary of Key Points 

This paper depicts some effective engineering practices 

that allow safe and efficient scaling of machine learning 

models. It focuses on the CI/CD pipeline, testing automation, 

efficient deployment strategies, and adaptive scaling 

techniques. MLOps best practices will make an organization’s 

model development life cycle easier. This enables them to 

deploy low-latency models serving high traffic with much-

reduced deployment times, improving their reliability and 

customer experience. Techniques that include shadow 

deployment, gradual dial-up, traffic routing, and load 

balancing enable teams to validate model updates against 

production traffic safely. With a well-engineered MLOps 

framework, teams can speed up their model development and 

release cycle to reduce the risk of failures and ensure that the 

models remain aligned with business goals. 

8.2. Future Trends in MLOps 

As the adoption of machine learning continues to expand 

within organizations, MLOps will continue to advance and 

improve to keep pace with demands around automation, 

scalability, robustness, and data privacy. 

8.2.1. Edge and IoT Applications 

MLOps practices are evolving to support distributed 

learning across a network of edge devices. A major challenge 

in this respect is model optimization, so they run on resource-

constrained devices efficiently. As chips evolve and 

specialized chips become common, MLOps practices will 

evolve to use newer hardware capabilities better. There will 

also be a great focus on green MLOps, ensuring that systems 

are energy efficient.  

8.2.2. Federated Learning 

Federated learning is a machine learning technique that 

enables the training of models on distributed datasets without 

the need for centralizing data. Since this does not require an 

exchange of data from a client to some global service, 

federated learning is helpful in reduced data transfers, privacy 

preservation, and continuous learning. There are challenges 

related to federated learning in terms of communication 

efficiency and the management of fairness and bias that it 

eventually needs to overcome. 

8.2.3. AIOps and AutoML Integration 

AIOps, or AI for Operations, and AutoML, or Automated 

Machine Learning, are two major and fast-evolving areas in 

machine learning. AIOps is, in simple words, adopting 

Artificial Intelligence and Machine Learning to enhance and 

automate operations, enhancing their efficiency, performance, 

and general operations. For instance, models may find 

anomalies in logs or metrics and trigger an alert or act 

accordingly, as set. AutoML aims to automate the process of 

applying machine learning to real-world problems by making 

ML more accessible to non-ML experts and increasing ML 

experts’ productivity. Automated feature engineering and 

hyperparameter optimization are some good examples.  

8.2.4. Ethical AI and Model Interpretability 

Monitoring for fairness and bias and explaining model 

outputs clearly will also be some of the core components of 

MLOps in the future. An efficient MLOps framework can 

handle data privacy and help with the secure transfer of data 

so that there is no scope for mishandling. 

8.3. Closing Remarks 

MLOps will become fundamental in ensuring ML models 

are more accessible, reliable, and useful. While the importance 

of ML models is increasing daily, they should be updated 

regularly based on variable customer trends. Building a 

concrete foundation in MLOps will help teams innovate and 

launch newer models safely. Automated solutions for testing, 

training, and validations, coupled with advanced risk 

mitigation and deployment techniques, position organizations 

to accelerate growth without compromising customer 

experience. 
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